Navigation in an autonomous flying robot by using a biologically inspired visual odometer

نویسندگان

  • Fumiya Iida
  • Dimitrios Lambrinos
چکیده

While mobile robots and walking insects can use proprioceptive information (specialized receptors in the insect's leg, or wheel encoders in robots) to estimate distance traveled, flying agents have to rely mainly on visual cues. Experiments with bees provide evidence that flying insects might be using optical flow induced by egomotion to estimate distance traveled. Recently some details of this "odometer" have been unraveled. In this study, we propose a biologically inspired model of the bee's visual "odometer" based on Elementary Motion Detectors (EMDs), and present results from goal-directed navigation experiments with an autonomous flying robot platform that we developed specifically for this purpose. The robot is equipped with a panoramic vision system, which is used to provide input to the EMDs of the left and right visual fields. The outputs of the EMDs are in later stage spatially integrated by wide field motion detectors, and their accumulated response is directly used for the odometer. In a set of initial experiments, the robot moves through a corridor on a fixed route, and the outputs of EMDs, the odometer, are recorded. The results show that the proposed model can be used to provide an estimate of the distance traveled, but the performance depends on the route the robot follows, something which is biologically plausible since natural insects tend to adopt a fixed route during foraging. Given these results, we assumed that the optomotor response plays an important role in the context of goal-directed navigation, and we conducted experiments with an autonomous freely flying robot. The experiments demonstrate that this computationally cheap mechanism can be successfully employed in natural indoor environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically inspired visual odometer for navigation of a flying robot

Experimental research in biology has uncovered a number of different ways in which flying insects use cues derived from optical flow for navigational purposes, such as safe landing, obstacle avoidance and dead reckoning. In this study, we use a synthetic methodology to gain additional insights into the navigation behavior of bees. Specifically, we focus on the mechanisms of course stabilization...

متن کامل

Biologically Inspired Visual Odometer for a Freely Flying Robot

Fumiya Iida Artificial Intelligence Laboratory Department of Information Technology University of Zurich Winterthurerstr. 190, CH-8057 Zurich, Switzerland E-mail : [email protected] Abstract The ability to navigate in a complex environment is crucial for both animals and robots. Particularly flying insects are capable of surprisingly good navigation despite the small size and relative simplicit...

متن کامل

Goal-Directed Navigation of an Autonomous Flying Robot Using Biologically Inspired Cheap Vision

In nature, flying insects are capable of surprisingly good navigation, despite the small size and relative simplicity of their brains. Recent experimental research in biology has uncovered a number of different ways in which insects use cues derived from optical flow for navigational purposes, such as obstacle avoidance, safe landing and dead-reckoning. Inspired by the visual navigation of flyi...

متن کامل

Pii: S0921-8890(98)00069-4

Recent studies of insect visual behaviour and navigation reveal a number of elegant strategies that can be profitably applied to the design of autonomous robots. The peering behaviour of grasshoppers, for example, has inspired the design of new rangefinding systems. The centring response of bees flying through a tunnel has led to simple methods for navigating through corridors. Experimental inv...

متن کامل

An autonomous flying robot for testing bio-inspired navigation strategies

In this paper, we present our approach to studying bio-inspired navigation strategies on an autonomous flying robot. The robot is a quadrocopter that is based on technology from Mikrokopter and extended with several sensor systems, most of them inspired by sensors that animals use for navigating in their natural environment. Using a light-weight embedded computer from gumstix onboard the copter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000